Targeting and Regulating of an Oncogene via Nanovector Delivery of MicroRNA using Patient-Derived Xenografts
نویسندگان
چکیده
In precision cancer nanomedicine, the key is to identify the oncogenes that are responsible for tumorigenesis, based on which these genetic drivers can be each specifically regulated by a nanovector-directed, oncogene-targeted microRNA (miRNA) for tumor suppression. Fibroblast Growth Factor Receptor 3 (FGFR3) is such an oncogene. The molecular tumor-subtype harboring FGFR3 genomic alteration has been identified via genomic sequencing and referred to as the FGFR3-driven tumors. This genomics-based tumor classification provides further rationale for the development of the FGFR3-targeted miRNA replacement therapy in treating patients with FGFR3 gene abnormity. However, successful miRNA therapy has been hampered by lacking of an efficient delivery vehicle. In this study, a nanovector is developed for microRNA-100 (miR-100) -mediated FGFR3 regulation. The nanovector is composed of the mesoporous magnetic clusters that are conjugated with ternary polymers for efficient miRNA in-vivo delivery. The miRNA-loading capacity of the nanovector is found to be high due to the polycation polymer functionalized mesoporous structure, showing excellent tumor cell transfection and pH-sensitive miRNA release. Delivery of miR-100 to cancer cells effectively down-regulates the expression of FGFR3, inhibits cell proliferation, and induces cell apoptosis in vitro. Patient-derived xenografts (PDXs) are used to evaluate the efficacy of miRNA delivery in the FGFR3-driven tumors. Notably, sharp contrasts are observed between the FGFR3-driven tumors and those without FGFR3 genomic alteration. Only the FGFR3-driven PDXs are significantly inhibited via miR-100 delivery while the non-FGFR3-driven PDXs are not affected, showing promise of precision cancer nanomedicine.
منابع مشابه
MicroRNA-205 inhibits renal cells apoptosis via targeting CMTM4
Objective(s):MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression. They have important roles in kidney development, homeostasis and disease, and participate in the onset and progression of tubulointerstitial sclerosis and end-stage glomerular lesions that occur in various forms of chronic kidney disease (CKD). In the present study, we elucidated the role of microR...
متن کاملPreclinical Development Restitution of Tumor Suppressor MicroRNAs Using a Systemic Nanovector Inhibits Pancreatic Cancer Growth in Mice
Mis-expression of microRNAs (miRNA) is widespread in human cancers, including in pancreatic cancer. Aberrations of miRNA include overexpression of oncogenic miRs (Onco-miRs) or downregulation of socalled tumor suppressor TSG-miRs. Restitution of TSG-miRs in cancer cells through systemic delivery is a promising avenue for pancreatic cancer therapy. We have synthesized a lipid-based nanoparticle ...
متن کاملMiR-490-5p Functions as an OncomiR in Breast Cancer by Targeting NFATc4
Breast cancer is a serious health problem worldwide in women. MicroRNAs are small non-coding RNAs of 18–25 nucleotides in length that post-transcriptionally modulate gene expression. MiR-490 has been reported as a tumor suppressor and oncomiR microRNA in breast cancer with two separate targets, NFAT and Rho. NFAT is one of the targets for miR-490 but the relationship between hsa</e...
متن کاملRestitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice.
Mis-expression of microRNAs (miRNA) is widespread in human cancers, including in pancreatic cancer. Aberrations of miRNA include overexpression of oncogenic miRs (Onco-miRs) or downregulation of so-called tumor suppressor TSG-miRs. Restitution of TSG-miRs in cancer cells through systemic delivery is a promising avenue for pancreatic cancer therapy. We have synthesized a lipid-based nanoparticle...
متن کاملMicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN.
Myeloid-derived suppressor cells (MDSCs) potently suppress the anti-tumor immune responses and also orchestrate the tumor microenvironment that favors tumor angiogenesis and metastasis. The molecular networks regulating the accumulation and functions of tumor-expanded MDSCs are largely unknown. In this study, we identified microRNA-494 (miR-494), whose expression was dramatically induced by tum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017